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Abstract. The board game Diplomacy is considered one of the most challenging
test cases for automated negotiation. While many bots have been developed for
this game, very few of them are able to negotiate successfully, and the ones that
do, have been trained on large data sets of human example games. This makes
it hard to apply the same techniques to other games or negotiation scenarios for
which no human knowledge is (yet) available. Furthermore, since those bots were
trained using deep learning, they are essentially black-boxes for which it is hard
to understand how they work. So, these bots do not help us much in gaining a
better understanding of strong negotiation techniques. Therefore, in this paper
we present a new Diplomacy bot, called Attila, that is purely based on symbolic
A.I. Its negotiation algorithm makes use of an existing oracle for the tactical part
of the game, called the ‘D-Brane Tactical Module’ (DBTM). We explain how
the DBTM can be converted into a search algorithm for automated negotiation,
and we present experiments that show that Attila strongly outperforms several
state-of-the-art Diplomacy bots.

1 Introduction

As the use of intelligent agents is becoming increasingly widespread, it is to be ex-
pected that in the near future it will be common for multiple such agents to be deployed
to work together, with each of them representing a different stakeholder with different
objectives. This would require negotiation between such agents, and we therefore ex-
pect that automated negotiation will become a more and more prevalent technology in
our daily lives. In order to develop such technology we need challenging test cases. One
such test case that has been widely studied is the game of Diplomacy.

Diplomacy is a board game for seven players that is also widely played over the In-
ternet. Similar to other board games such as chess and go, it has completely observable
game states,1 it does not involve any random events, and it has an extremely large search
space with a branching factor of about 3416 possible joint moves per turn [20]. How-
ever, the main difference between Diplomacy and other classical board games, is that
the players may form coalitions and may negotiate with each other to make agreements

1 One could argue that Diplomacy does have hidden information, because players make secret
agreements. However, these agreements are part of the players’ strategies rather than of the
game state.
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about which moves they will make. One can therefore say that Diplomacy consists of
two ‘layers’; a tactical layer, and a negotiation layer. The tactical layer involves the
players moving their pieces over the board, while the negotiation layer involves the
players negotiating with each other about their moves. Good players need to master
both aspects of the game.

Although Diplomacy has been studied for a long time, most bots that have been
developed for this game are not able to negotiate [23,8,26,27]. A major breakthrough,
however, was made recently by a team of researchers from Meta, who implemented a
negotiating Diplomacy bot that was able to beat human players [5]. Their approach used
a deep-learning model that was trained on a database of games played by humans. Sim-
ilarly, a team from DeepMind also implemented a successfully negotiating bot, trained
on human data [18]. While the key challenge of Diplomacy has now been tackled us-
ing deep learning, this approach has two downsides. Firstly, as is often the case with
machine learning, the aforementioned bots are essentially black-boxes, which makes it
very hard to tell why they are successful. They therefore do not help us much in gaining
more insight into the topic of automated negotiation.2 Secondly, both of these bots re-
quired a large corpus of human data in order to be trained. This means that one cannot
follow the same approach to apply negotiation to other games or use cases for which no
such data is (yet) available.

We therefore present a new negotiating Diplomacy player, called Attila (Advanced
negoTiaTing dIpLomAcy bot), that is based on purely symbolic A.I. techniques. For
its implementation we followed an approach that was suggested in [12]. That is, we
used an existing oracle for the tactical layer of the game, called the D-Brane Tactical
Module (DBTM) and applied a trick that allowed us to use it for the negotiation layer as
well. This trick consists in pretending that we are controlling the armies of two different
players (the one played by our agent, plus its coalition partner), and asking the DBTM
to find the best moves for this combined player. These moves can then be proposed to
the coalition partner as a potential deal. This idea may seem simple, but, to the best of
our knowledge, no one else has tried this approach in the game of Diplomacy before.

While the implementation of our bot is entirely specific to Diplomacy, we think the
underlying ideas can be generalized to other games or negotiation scenarios, as long
as one has access to some algorithm to determine good actions for an individual non-
negotiating agent. For example, in [13] a scenario was described in which logistics
companies negotiated to exchange their truck loads. In this scenario one can use the
same approach by pretending all truck loads belong to the same company, and then us-
ing a standard optimization algorithm to find the optimal solution for that one company.

Of course, our approach does require knowledge of the opponents’ utility functions,
but we argue that in many realistic scenarios one does indeed have at least approximate
knowledge about the opponent’s preferences, and otherwise such knowledge can be ob-
tained at run-time using opponent modeling algorithms. While this knowledge may not
be perfectly accurate, it can still be used to apply our approach and any other negotiation
algorithm would also have to work with such approximate knowledge anyway.

2 One could try to gain such insight using techniques from Explainable A.I., but to the best of
our knowledge this has not been done for those bots.
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Another advantage of our approach is that it is entirely transparent. We do not only
know that it works, but we also understand why it works, which may be useful for the
design of new negotiation algorithms for other domains. Finally, another elegant feature
of Attila is that it does not depend on any parameters that need to be fine-tuned.

We should stress that the aim of our research is purely to investigate negotiation
algorithms for highly complex scenarios, so we do not aim to build a full-fledged Diplo-
macy player that can also handle all other aspects of Diplomacy, such as trust, coalition
formation, or human psychology, and Attila is not intended for play against humans. For
this reason our research focuses only on a variant of Diplomacy in which all agreements
are binding. That is, once players make an agreement, they have to obey it.

The source code of Attila has been made publicly available at:
https://www.iiia.csic.es/~davedejonge/downloads

2 Related Work

The topic of automated negotiation has been studied as early as the 1950’s [22], but
mainly from a theoretical point of view. The study of negotiation algorithms took off in
the 1990’s [6]. However, most negotiation algorithms that have been published since,
require the agent to calculate the utility value of every possible agreement. Such algo-
rithms are not feasible for many real-world scenarios in which the number of potential
deals is astronomically large, or in which the calculation of the utility values is compu-
tationally hard. For such scenarios automated negotiation needs to be combined with in-
telligent search algorithms to search for the best deals to propose. While several papers
have been published on this topic [9,14,15,13,17], it still remains an under-investigated
problem. Especially, the game of Diplomacy has been identified as an ideal test bed to
experiment with such algorithms [4].

The application of A.I. to the game of Diplomacy dates back to 1989 [19,20]. How-
ever, most Diplomacy bots that were developed in the early days were not capable of
negotiation [23,8,26]. One of the most notable of these bots is DumbBot, which played
surprisingly well, given that it was based only on a few simple heuristics. For a long
time, DumbBot was the default benchmark used to compare new Diplomacy bots. Sev-
eral negotiating bots have been shown to outperform the DumbBot, while being equal
or similar to the DumbBot if they did not negotiate. Examples are Shaheed’s Diplo-
mat [25], the Diplominator [28], Fabregues’ bot [3], and DipBlue [7].

To make the development of Diplomacy bots easier for scientific research, the DipGame
framework was developed [4], which was later extended into the BANDANA frame-
work [16]. BANDANA included a new bot called D-Brane, which was much stronger
than DumbBot. It was shown that, even if D-Brane does not negotiate, it would still
outperform some of the bots mentioned above that did negotiate [16].

One important aspect of D-Brane, is that it consists of two separate modules, namely
a tactical module and a negotiation module, which respectively focus on the two differ-
ent layers of the game. Its tactical module (the DBTM) was made publicly available to
allow researchers to implement new negotiation algorithms on top of it. This allowed
researchers to focus purely on the implementation of negotiation algorithms, and com-
pare several such algorithms, without having to care about the tactical aspects of the

https://www.iiia.csic.es/~davedejonge/downloads
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game. Since then, many new bots have been developed by implementing a negotiation
algorithm on top of the DBTM, but none of them resulted in a very clear increase of
performance with respect to the non-negotiating D-Brane. One such agent, called Al-
phaDip [21], did show some improvement, but the authors still concluded that their
negotiation algorithm only had a very small influence on its performance.

The DBTM was also used in the Diplomacy Challenge that was part of the Auto-
mated Negotiating Agents Competition (ANAC) from 2017 till 2019. However, again,
none of the algorithms that were submitted to this competition managed to clearly im-
prove over the non-negotiating D-Brane [12,1]. Therefore, the question how to imple-
ment a negotiation algorithm for Diplomacy (and for complex negotiation scenarios in
general) remains an important open problem.

3 Automated Negotiation

The research field of automated negotiation deals with multi-agent systems in which the
agents are purely self-interested and have opposing interests, but nevertheless still need
to cooperate in order to find mutually beneficial solutions. That is, the agents need to
jointly come to some agreement by exchanging proposals to one another, according to
some negotiation protocol that defines when the agents are allowed to propose or accept
which offers, and when such an offer becomes a formally binding agreement [24].

In general, in automated negotiation one assumes there is a finite set of agents
α1, α2, . . . αn, and a set of potential offers Ω that the agents may propose to each other.
Each agent αi has its own utility function ui : Ω → R that maps each offer ω ∈ Ω to
a utility value ui(ω) ∈ R. Furthermore, one usually assumes there is a given deadline
T . If the agents do not come to an agreement before this deadline, the negotiations fail.
The utility value rvi that each agent αi receives in that case, is called the reservation
value. This means that a rational agent would never accept any proposal that yields less
utility than its reservation value. We therefore say that an offer ω is rational for agent
αi if ui(ω) ≥ rvi and we say that ω is individually rational3 iff it is rational for every
agent involved in that offer and for at least one of those agents αi we have ui(ω) > rvi.

Definition 1. A negotiation scenario N consists of a a finite set of agents {α1, α2, . . . , αn},
a set of offers Ω, for each agent αi a utility function ui : Ω → R, for each agent αi a
reservation value rvi ∈ R, a negotiation protocol, and a deadline T .

4 Diplomacy

We here give a short description of the game of Diplomacy. It can be formalized as an
extensive-form game with seven players, who make their moves simultaneously. The
full set of rules is rather complex, so we only give a simplified description.4

3 This term may be somewhat confusing since it refers to rationality for all agents, but this is
standard terminology in the literature.

4 We refer to https://www.wizards.com/avalonhill/rules/diplomacy.pdf
for a complete description of the rules.

https://www.wizards.com/avalonhill/rules/diplomacy.pdf
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4.1 The Tactical Layer

The seven players of Diplomacy are called England, Russia, Germany, France, Turkey,
Austria and Italy, which are usually abbreviated to ENG, RUS, GER, FRA, TUR, AUS,
and ITA. The game takes place on a map of europe which is divided into 75 provinces.
We denote the set of players as A and the set of all provinces as P .

Each player begins with 3 or 4 armies that are each placed in a different province.
At any time during the game any province can hold at most one army. Therefore, a
game state s can be formalized as a map s : P → A∪ {ϵ} that maps each province to
a player that is currently occupying the province, or to the symbol ϵ representing that
the province is empty. We denote the set of all possible game states as S.

Some of the provinces (34 of the 75) are so-called supply centers (SC). We say a
player becomes the owner of a supply center if she moves one of her armies into that SC
(she conquers the SC). If that player later moves her army out of that SC, she remains
the owner, until another player moves into it. If the owner of an SC changes, the new
owner will receive an extra army in the next round, and the previous owner will lose
one army. A player is eliminated when she loses all her SCs, and thus all her armies.
The game ends either when one player becomes the winner by owning 18 or more SCs
(a Solo Victory), or when all players that have not yet been eliminated agree to a draw.

In each round each player needs to decide what to do with each of her armies.
In Diplomacy-terminology we say that each player must submit an order for each of
her armies. The player can either submit a move order, meaning that she tries to move
the army from its current province to an adjacent province, or a support order, which
means the army will not move, but instead will increase the strength of another army.
To formalize this, we define an order o to be a tuple of the form (P,move, P ′) (a
move order), or of the form (P, sup, P ′) (a support order). The order (P,move, P ′)
represents that a player aims to move an army from province P to province P ′, while
(P, sup, P ′) represents that she wants the army in province P to give support to the
army in province P ′. We denote the set of all possible orders as O. Given a game state
s and a player α, we say an order (P,move, P ′) or (P, sup, P ′) is an order for an
army of α, if s(P ) = α. Each round the players submit their orders simultaneously,
so each player has to decide her orders without knowing the orders submitted by the
other players. If an army a in province P is ordered to move to a province P ′, then
it will only succeed if it has more supports than any other army that is also ordered
to move to province P ′. If the army a does not succeed, then it will either stay in its
current province P , or it will be expelled from it, in case there is some other army that
successfully invades P .

4.2 The Negotiation Layer

One very important aspect of Diplomacy is the fact that an army of one player αi may
give support to an army that belongs to another player αj . Therefore, players can help
each other to defeat other players. To facilitate such cooperation between players, each
round is divided into two stages: a negotiation stage followed by an action stage. During
the action stage the players submit their orders, while during the preceding negotiation
stage the players can negotiate with each other, in private, about which orders they
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will (or will not) submit during the action stage. Therefore, each game state s can be
identified with a negotiation scenario Ns. The agents in this scenario are just the seven
players of the game. An offer ω is a set of orders (this set may contain orders for armies
of any of the players), so we have5 ω ⊂ O and Ω = 2O. Whenever some players come
to an agreement ω, it means that each of those players agrees to submit the orders in ω
for their respective armies.

Formalizing the utility functions and reservation values of Ns is harder, because
in Diplomacy there is no closed-form expression for a function that maps agreements
to utility values. This is because the true utility of a player is not determined by a
single agreement, but rather by the final outcome of the game, which depends on all
the agreements made throughout the entire game, as well as on the moves that all the
players make. Therefore, we can only estimate the utility values and reservation values
of Ns heuristically. In the rest of the paper we will use the notation ui(ω) to denote
the estimated utility (according to some heuristic), for player αi and offer ω, and rvi to
denote the estimated reservation value of αi.

For the negotiation protocol of Ns, we use the unstructured negotiation proto-
col [14], because it is the standard protocol used by the BANDANA framework, and
is most similar to the way humans negotiate in a real Diplomacy game. In this protocol,
players do not have to take turns. Instead, each player can propose or accept any offer at
any time. A proposal may involve any number of players and it is sent to all the players
involved in it, while it remains secret to all other players. A proposal becomes officially
binding when accepted by all players involved in it.

It is important to note that, in a real Diplomacy game, agreements between players
are purely informal. That is, players are not obliged to obey the agreements they make,
and each player must make a personal judgment about whether she thinks the other
players will obey their parts of the agreement. While this is a very important aspect of
Diplomacy, the goal of our work is not so much to develop a full-fledged Diplomacy
player, but rather to investigate automated negotiation techniques. We therefore assume
a variant of the game in which all players are obliged to obey their agreements.

5 The D-Brane Tactical Module

We here give a short description of the DBTM and how it can be used to estimate
reservation values and utility values.

5.1 Formalization of the DBTM

The DBTM is an algorithm that calculates two functions τsc and τo that we define
below. It should be noted, however, that due to the complexity of the game it is not
always able to calculate them exactly, but in most cases it does make a very accurate

5 For the sake of simplicity we are ignoring two important facts here. Firstly, BANDANA also
allows players to propose demilitarized zones, rather than orders, but this is not relevant to our
paper. Secondly, not every set of orders obeys the rules of the game. However, we could still
allow players to propose such illegal sets of orders. They will just not have any effect when
they are submitted.
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approximation. The functions τsc and τo each take as their input a triple (s, α, ωin),
where s is a game state, α is a player, and ωin ⊂ O is a (possibly empty) set of orders.
The function τsc outputs a non-negative integer sc ∈ N and the function τo outputs a
set of orders ωout ⊂ O. So, we have:

τsc : S ×A× 2O → N and τo : S ×A× 2O → 2O

To explain their meaning, let us first focus only on the case that ωin = ∅. In this
case, the number τsc(s, α, ∅), represents the number of SCs that player α would own
in the next state of the game, when the current state is s, while α submits the set of
orders that maximizes the number of SCs for α, and while all other players submit
those orders that minimize this number. In other words, it is the ‘paranoid’ maximin
value for α, w.r.t. the number of SCs owned at the end of the turn.

The set ωout = τo(s, α, ∅) contains exactly one order for each army of α, and no
other orders. It represents the set of orders corresponding to the output of τsc. That is, it
is the set of orders that α should submit in order to maximize the number of SCs it will
own, under the paranoid assumption that all other players try to minimize it. The non-
negotiating D-Brane agent always submits exactly these orders.6 It should be noted that
the return value of τo is not always uniquely defined, because there could be multiple
sets of orders that satisfy this definition. In that case, the set ωout returned by the DBTM
depends on the implementation details of the DBTM.

In case that ωin ̸= ∅, the value τsc(s, α, ωin) is a constrained maximin value. That
is, it is the maximin value under the constraint that at least the orders in ωin are submit-
ted. The set ωin may contain orders for any player, so it may constrain the actions of
α itself, as well as the actions of any other player. However, ωin cannot include more
than one order for the same army. Similarly, the set of orders ωout = τo(s, α, ωin) rep-
resents those orders that α should submit in order to be guaranteed at least its maximin
value, under the constraint that at least the orders in ωin are submitted. This implies that
whenever there is an order in ωin for an army of α itself, then that same order must also
be present in ωout. The main purpose of calculating τo with non-empty ωin, is that it
allows a player to find the best set of orders when some of the orders are already fixed
by a negotiated agreement ωin. The calculation of τsc with non-empty ωin can be used
to predict how many SCs a player would gain from a potential agreement ωin.

5.2 Estimating Utility and Reservation Values

Given any game state s, we can use the DBTM to estimate the reservation values of the
corresponding negotiation scenario Ns as follows:

rvi := τsc(s, αi, ∅) (1)

Furthermore, when players αi and αj agree to submit the set of orders ω, then αi’s
estimated utility value ui(ω) for that deal can be calculated as:

ui(ω) := τsc(s, αi, ω) (2)
6 More precisely: it submits the orders calculated by the DBTM that approximate the theoreti-

cally correct set of orders ωout.
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6 ATTILA

We are now ready to present Attila. It consists of a negotiation algorithm added on top
of the non-negotiating D-Brane. For simplicity we first explain how it negotiates with
only one single opponent. Next, we explain how it can negotiate with multiple partners.
Attila was implemented in Java, on the BANDANA framework (version v2.3).

Negotiation algorithms are typically implemented according to the BOA model [2].
That is, they are composed of a Bidding strategy, an Opponent modeling strategy, and an
Acceptance strategy. Recently, however, it was argued [13] that for complex scenarios
such as Diplomacy, this model should be extended to a BOASE model, where the S
stands for ‘Search’, and the E for ‘Evaluation’. This means that a negotiating agent
should also be composed of an evaluation algorithm that calculates (or estimates) the
utility value ui(ω) for any given offer ω, as well as a search algorithm that explores
the offer space to find good offers to propose. The evaluation component of Attila is the
DBTM, as explained in Section 5, and its search component is explained in Sections 6.1
and 6.3. The bidding and acceptance strategies are explained in Section 6.5. Attila does
not use any separate algorithm for opponent modeling.

6.1 Finding a Good Proposal

The DBTM was designed to be used only for the tactical layer of the game, so it only
returns a set of orders for one given player. However, in the case of negotiations, we
want to find a set of orders for two or more players. We here show how we can apply a
simple trick to allow the DBTM to do that.

Let us assume that Attila plays the role of player αi, and that it aims to negotiate a
deal with player αj . Furthermore, suppose that s denotes the current game state. In order
to find a good offer to propose to αj , Attila will ask the DBTM for the best possible set
of orders for player αi in a hypothetical alternative game state s′. This alternative game
state is identical to s, except that all armies that in reality belong to αj , now belong to
αi. Formally, for every province P , the state s′ satisfies:

s′(P ) :=

{
αi if s(P ) = αj

s(P ) otherwise
(3)

So, assuming that Attila has not made any agreements for the current turn yet, it
will use the DBTM to calculate τo(s

′, αi, ∅) and τsc(s
′, αi, ∅). Let us define:

ω∗ := τo(s
′, αi, ∅) sc∗ := τsc(s

′, αi, ∅)

Note that ω∗ is a set of orders for exactly those armies that belong to αi in the
hypothetical state s′. This corresponds to a set of orders for all armies of αi and αj

combined in the real game state s. Specifically, it is the ‘best’ possible set of orders for
those two players, in the sense that there is no set of orders that guarantees more supply
centers to the two players combined. Similarly, sc∗ represents the number of supply
centers that αi and αj combined are guaranteed to be able to obtain in the real game
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state s. Note that in general this number is larger than simply the sum of the number of
SCs they could obtain individually:

τsc(s
′, αi, ∅) ≥ τsc(s, αi, ∅) + τsc(s, αj , ∅)

This is because in the calculation of τsc(s′, αi, ∅) the DBTM takes into account that
the armies that in reality belong to αi and αj may support each other, while such support
orders between different players are not considered when calculating the individual
values τsc(s, αi, ∅) and τsc(s, αj , ∅).

After determining ω∗, Attila uses the DBTM again to calculate rvi and ui(ω
∗)

respectively, using Eqs. (1) and (2), with the real game state s. This is to check that ω∗

is individually rational. If this is the case, then it can be argued that ω∗ is indeed the best
possible proposal, since it has been shown that even for purely self-interested agents the
optimal strategy is to aim for a deal that maximizes the sum of the utilities of the two
agents (among those that are individually rational) [11] .

6.2 Example

Imagine a miniature version of Diplomacy with only three players TUR, RUS, AUS
and only three provinces: Trieste (Tri), Budapest (Bud), and Vienna (Vie). Each of
these provinces is adjacent to the other two, and each of them is an SC. Now, suppose
the game is in a state s where each player is occupying exactly one of those SCs:

s(Tri) = TUR, s(Bud) = RUS , s(Vie) = AUS

Furthermore, suppose that Attila plays as TUR and aims to negotiate with RUS. Since
each of these players only has a single army to attack and each player has one army to
defend their SC, neither of the players is strong enough to conquer any of the other SCs
by itself. So, if we use the DBTM to calculate their reservation values we get:

rvtur = τsc(s,TUR, ∅) = 0

rvrus = τsc(s,RUS , ∅) = 0

This is because for any player α the DBTM will make the paranoid assumption that its
two opponents will work together and therefore take α’s supply center.

Now, in order to find an offer to propose to RUS, Attila will internally construct the
following hypothetical worldstate s′:

s′(Tri) = TUR, s′(Bud) = TUR, s′(Vie) = AUS

In this hypothetical state TUR has two armies adjacent to Vie, so TUR is strong enough
to conquer Vie. If we now apply the DBTM to s′ and TUR, we get:

τsc(s
′,TUR, ∅) = 3

τo(s
′,TUR, ∅) = {(Tri ,move,Vie) , (Bud, sup,Tri)}

That is, the DBTM suggests that TUR’s army in Tri should move to Vie, with support
from TUR’s army in Bud. This would result in a total of three SCs for TUR, because
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TUR already owns Tri and Bud, and TUR would successfully conquer Vie, regardless
of what orders AUS would submit.

Of course, this is only true in the hypothetical state s′. If these orders are submitted
in the actual state s, it would mean that only the order (Tri ,move,Vie) would be
submitted by TUR, while the order (Bud, sup,Tri) would be submitted by RUS, and
as a result TUR would end up with two SCs (Tri and Vie) while RUS would end up
with only one SC (Bud). So, Attila uses the DBTM again to calculate the utility values
for the real game state and finds:

utur(ω
∗) = τsc(s,TUR, ω∗) = 2

urus(ω
∗) = τsc(s,RUS , ω

∗) = 1

We see that for both players the utility of ω∗ is higher than their respective reservation
values, so we have found an individually rational deal. While TUR obviously benefits
from this deal by receiving support from RUS, note that RUS also benefits from it,
because RUS now has the guarantee that TUR will not work together with AUS, and
thus that RUS will not lose its SC.

As mentioned above, the return value of τo is not always uniquely defined. In
this example, the DBTM could have just as well returned the orders (Tri , sup,Vie)
and (Bud,mov,Tri). As explained, this depends on the implementation details of the
DBTM, and Attila simply uses whatever the DBTM returns.

6.3 Generating More Proposals

We argued above that ω∗ is the best possible proposal. However, this is only true under
a number of assumptions. Firstly, it only holds if ω∗ is individually rational. Secondly, it
was based on the assumption that the number of SCs is an accurate measure of ‘utility’,
but we know that in reality it is only a heuristic. And finally, it assumes that the opponent
is perfectly rational. For this reason, the opponent may in reality still reject the proposal,
and therefore it is essential that we also find other potential deals that could be proposed
in case ω∗ is rejected.

To find alternative proposals we take the following approach. Let o be any arbitrary
order from ω∗, and let ωsup,o be the subset of ω∗ consisting of o and all orders in ω∗

that give support to o. Then, the new proposal ω′ is defined as ω′ := ω∗ \ ωsup,o. That
is, the original set of orders ω∗, but with order o and all orders that give support to
o removed from it. By repeating this procedure for every order o ∈ ω∗ we can find
several alternative offers. For each of them we then estimate its utility using the DBTM
and Eq. (2).

For example, supose we have ω∗ = {o1, o2, o3, o4} with:

o1 = (Tri ,move,Vie) o2 = (Bud , sup,Tri)

o3 = (Hol ,move,Bel) o4 = (Spa,move,Por)

So, o1 is supported only by o2, while o2, o3 and o4 are not supported by any order. Then:

ωsup,o1 = {o1, o2} ωsup,o2 = {o2}
ωsup,o3 = {o3} ωsup,o4 = {o4}
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This means Attila would generate the following alternative offers:

ω′
1 = ω∗ \ ωsup,o1 = {o3, o4} ω′

2 = ω∗ \ ωsup,o2 = {o1, o3, o4}
ω′
3 = ω∗ \ ωsup,o3 = {o1, o2, o4} ω′

4 = ω∗ \ ωsup,o4 = {o1, o2, o3}

The idea behind this, is that we already know that ω∗ is a reasonably good deal,
so we want any alternative proposal to be just a small variation of ω∗. By removing
the order o we give the player α that was supposed to submit order o the freedom to
do something else, which may make the new offer ω′ slightly more beneficial for α,
although at the expense that it may be slightly less beneficial to the other player.

6.4 Multiple Negotiation Partners

Above, we have explained how Attila negotiates with one given negotiation partner.
However, in Diplomacy the players have to decide during the game with whom they
will cooperate, and these partners may change over the course of the game. In order to
allow Attila to negotiate with multiple partners, we simply let Attila engage in a separate
bilateral negotiation with each individual opponent, and let each of these negotiations
run simultaneously.

That is, for each other player αj we find an initial offer ω∗
j in the way described

in Section 6.1. This means that for every opponent αj we create a separate alternative
game state s′j in which the armies of αj are assigned to αj , and then find ω∗

j by calling
the DBTM to calculate τo(s

′
j , αi, ∅). Next, for each opponent, we create a set of alter-

native offers in the same way as described in Section 6.3. So, we end up with one set of
potential proposals for each opponent. Once it makes an agreement with any of those
opponents, it stops all negotiations for that round.

Attila does not build long-term relationships, so, in the next round, Attila again
starts a new bilateral negotiation with every other player. It does not care with which of
those opponents it has already made any deals before.

The current implementation of Attila is not yet capable of true multilateral negotia-
tions in which it proposes deals involving more than two players. However, Attila can
be generalized in a straightforward manner to do so. For example, it could generate an
optimal deal ω∗

jk that involves two other players αj and αk, by creating a hypothetical
state s′jk in which all armies of αj and αk are assigned to Attila.

6.5 Bidding and Accepting

For the bidding strategy Attila uses a combination of the MiCRO strategy [10] and
a time-based strategy [6]. At any time t, Attila may determine, for any opponent αj ,
whether or not to make a new proposal to that opponent. It does that based on two
criteria, which we call the ‘MiCRO criterion’ and the ‘time criterion’. Attila will only
make a new proposal to opponent αj if both criteria are satisfied. The MiCRO criterion
states that the number of unique offers that Attila has proposed to αj should not be
greater than the number of unique offers that αj has proposed to Attila. This forces
the opponent to make concessions. The time criterion states that the utility that Attila
would receive from its own next proposal should be greater than its ‘aspiration level’
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f(t), where f is some function that decreases over time. This criterion ensures that
Attila will initially only propose the most profitable offers.

Attila accepts a proposal from αj iff it is better for Attila than (or equal to) the next
offer that Attila would be proposing to that opponent.

6.6 Tactics

Once Attila reaches an agreement ω with some other player, it uses the DBTM to de-
termine the best set of orders to submit, under the restriction that it must obey the
agreement. That is, Attila will submit the orders given by τo(s, αi, ω) (where s is the
current game state and αi is Attila). In case that no agreement is made, Attila will, just
like D-Brane, submit the orders given by τo(s, αi, ∅). This means that in the absence of
any agreements (or negotiation at all) Attila is identical to the non-negotiating D-Brane.

7 Experiments

We will now present the results of our experiments with Attila. All experiments were
conducted on a laptop with 11th Gen Intel Core i7-1165G7@2.80GHz CPU, 16 GB
RAM, and Windows 11. We made sure that each game was automatically stopped after
80 rounds (i.e. after the Winter 1940 phase) and solo-victories were disabled (so a
game would continue even if one of the players had 18 or more SCs). Furthermore,
any agreement between players was considered officially binding, so players always
had to obey their agreements. Deadlines were set to 3 seconds per round.

7.1 The Benefit of Negotiation

The goal of our first experiment was to determine whether the negotiation algorithm
of Attila indeed enables the agent to achieve better results than without negotiations.
Since, in the absence of negotiation, Attila is identical to D-Brane, any improvement of
Attila over D-Brane must be purely due to the negotiation algorithm.

In order to make this comparison, we played a large number of games with two
instances of Atilla and five instances of the non-negotiating D-Brane, and we observed
how many SCs the Atillas and the D-Branes would score. Since this highly depends on
which two players are being played by Attila, we made sure that each coalition of two
players was assigned to the two instances of Attila equally often (there are 7×6

2 = 21
such coalitions, and we played 200 games for each coalition, so we played 21× 200 =
4200 games). The results are displayed in the right-hand column of Table 1. We see that
the two Attilas each score an average of 8.40 SCs per game, while the non-negotiating
D-Branes each only score 3.44 SCs.

Furthermore, we wanted to know whether negotiations are really necessary to ob-
tain improved results, or if the same results could also be achieved merely by assuming
a ‘peace treaty’ between the two Attilas, meaning that they never attack each other.
Therefore, we again ran 200 games for each possible coalition of two players, but with-
out negotiation, and we configured the Attilas to make sure they never attacked each
other. The results of this experiment are displayed in the center column of Table 1. We



Attila: a Negotiating Diplomacy Player Based on Purely Symbolic A.I. 13

see that in this case the two Attilas each score an average of 5.86 SCs per game, while
the non-negotiating D-Branes each only score 4.46 SCs. While this is still an improve-
ment, it is a lot smaller than the improvement achieved by the fully negotiating Attilas.

We can draw two conclusions from this experiment. Firstly, we conclude that Attila
is much better than D-Brane. Secondly, while two agents can already improve their
scores simply by agreeing not to attack each other, this effect is only small compared to
the improvement achieved by the negotiations.

Finally, we tested the statistical significance of our conclusions. We performed a
paired t-test to compare the two results in the center column of the table, another paired
t-test to compare the two results in the right-hand column, and finally a Welch t-test to
compare the two results in the top row.7 In all cases the p-value was smaller than 10−44.

Agent SCs (Peace) SCs (Nego)
Attila (×2) 5.86± 0.07 8.40± 0.08
D-Brane (×5) 4.46± 0.03 3.44± 0.03

Table 1: The number of SCs scored by each
agent (averaged per game and agent in-
stance) in two settings with each 2 instances
of Attila against 5 instances of D-Brane.

Agent SCs
Attila (×1) 6.80 ± 0.20
D-Brane (×5) 4.55 ± 0.08
Gunma (×1) 3.80 ± 0.12

Table 2: The number of SCs scored by each
agent (averaged per game and agent in-
stance), in an experiment with 1 Attila, 1
Gunma, and 5 instances of D-Brane.

7.2 Negotiation with a Different Agent

In our previous experiment we have shown that Attila performs well when it negotiates
with a copy of itself. In this section we will show that Attila still performs well when
negotiating with some other agent.

For this experiment we used one of the agents that participated in one of the ANAC
Diplomacy competitions. Like Attila, these agents all consist of a negotiation algorithm
built on top of the non-negotiating D-Brane, so without negotiation they are all identical
to D-Brane. For our experiment we chose to use an agent called Gunma, because it
outperformed the other agents in the competition of 2018. We also considered some of
the other agents that performed well in the ANAC competitions, such as CoalitionBot,
Frigate, and Oslo_A. However, as observed in [12] and [1], both Frigate and Oslo_A
never accept any proposals, due to bugs in their codes, which makes them useless for
our experiments. CoalitionBot, on the other hand, always accepts any proposal, which
makes any experiment with that agent also rather meaningless.

We ran an experiment in which we played 420 games (10 games for each possible
coalition) with one instance of Attila, one instance of Gunma, and five instances of the

7 Note that the two numbers in the center column are obtained from the same set of games, so
we had to perform a paired test to compare these numbers. The same holds for the right-hand
column. On the other hand, the two numbers in the top row are each obtained from an entirely
different set of games, so we had to perform an unpaired test to compare them.
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non-negotiating D-Brane. We observed the average number of SCs obtained by each
of these agents (per game and per agent instance) and displayed the results in Table 2.
A paired t-test showed that Attila was better than D-Brane with p = 10−5 and better
than Gunma with p = 10−8. We see that Attila still benefits from the negotiations, but
less than in our previous experiment. We also see that Gunma is actually worse off, so
apparently it is agreeing to deals that are not very good for itself. This may also explain
why Attila scores lower in this experiment, because negotiations are much harder if
your negotiation partner is not making any good proposals.

7.3 Negotiations with Multiple Players

Finally, we tested Attila against multiple negotiating opponents. We therefore ran three
more experiments, with 2, 3 and 4 instances of Attila respectively. In each game we
also included one non-negotiating D-Brane, and the rest of the field was completed
with instances of Gunma and Saitama (another negotiating agent that participated in the
ANAC Diplomacy competition). It should be stressed that the agents are anonymous,
so Attila does not know which other players are also copies of Attila. The results are
displayed in Table 3. We see that in all cases Attila clearly outperforms all other agents.
For all three experiments we performed a paired t-test to check that Attila was indeed
better than Gunma, and the result was affirmative with confidence levels of p = 0.018,
p = 0.012 and p = 0.065 respectively. Similarly, we performed such tests to compare
Attila with D-Brane and Saitama, and in all cases the p-level was smaller than 3 · 10−3.

Note that the score of Attila decreases as the number of instances of Attila increases.
This is to be expected, since there is a fixed number of supply centers, so the fewer weak
agents, the fewer supply centers the Attilas can steal from the weaker agents.

Agent SCs
Attila (×2) 7.76 ± 0.75
Gunma (×2) 4.90 ± 0.68
D-Brane (×1) 4.22 ± 1.11
Saitama (×2) 2.22 ± 0.31

Agent SCs
Attila (×3) 6.93 ± 0.57
Gunma (×2) 4.08 ± 0.72
D-Brane (×1) 3.00 ± 0.81
Saitama (×1) 2.05 ± 0.90

Agent SCs
Attila (×4) 6.23 ± 0.32
Gunma (×1) 4.28 ± 1.00
D-Brane (×1) 3.44 ± 0.73
Saitama (×1) 1.37 ± 0.31

Table 3: The number of SCs scored by each agent (averaged per game and per agent instance), in
three experiments with multiple negotiating agents. Between parentheses the number of instances
of each agent.

8 Conclusions

We have presented Attila, a new bot for the game of Diplomacy that consists of a negoti-
ation algorithm built on top of the non-negotiating D-Brane. This is the first negotiation
algorithm ever that has been shown to clearly improve the performance of the D-Brane,
despite the fact that many other researchers have attempted to do this. Attila does not
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rely on any machine learning techniques, which makes it more transparent than other
approaches, and allows us to get a better understanding of negotiation. Furthermore,
it does not require access to any database of example games, and does not have any
parameters that need to be learned or fine-tuned.
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